Elektrodynamica

Uit testwiki
Naar navigatie springen Naar zoeken springen

Sjabloon:Zijbalk elektromagnetisme

Elektrodynamica is het deelgebied van de natuurkunde dat elektromagnetische effecten beschrijft. Het is ontwikkeld door onder anderen Ampรจre, Gauss, Faraday, maar vooral door Maxwell. Het is een bijzonder elegante theorie, die geldt zolang de lengteschalen niet zo klein worden dat er kwantummechanische effecten op treden.

Inleiding

De elektrodynamica is gebaseerd op de wetten van Maxwell, bijna de complete theorie kan uit de vier vergelijkingen worden afgeleid. Zij beschrijven hoe elektrische en magnetische velden, respectievelijk (๐„ en ๐), uit ladingsverdelingen ρ en stroomdichtheden ๐‰ worden opgewekt, hoe een veranderend elektrisch veld een magnetisch veld kan opwekken en andersom. De vergelijking

๐…=q(๐„+๐ฏ×๐)

completeert de beschrijving. Daarin is ๐… de lorentzkracht, die de elektrische en magnetische velden uitoefenen op een deeltje met lading q.

In de Maxwellvergelijkingen staat beschreven hoe je de lading- en stroomdichtheid kan berekenen als je de elektrische en magnetische velden kent. Vaak moet dit juist de andere kant op: de lading- en stroomdichtheden zijn ten slotte wat we kunnen beรฏnvloeden, en het elektrische en magnetische veld moet daaruit berekend worden.

Potentialen

Vaak wordt er bij de berekening van het veld een hulpmiddel gebruikt, dat de berekening eenvoudiger maakt: de potentiaal. De elektrische potentiaal kan als volgt worden berekend:

ϕ(๐ซ,t)=14πε0ρ(๐ซ,tr)|๐ซ๐ซ|d3r

en de magnetische door

๐€(๐ซ,t)=μ04π๐‰(๐ซ,tr)|๐ซ๐ซ|d3r,

waarbij tr in beide formules wordt gegeven door tc1|๐ซ๐ซ|.

Hierin is c1|๐ซ๐ซ| de tijd die een verandering op r' erover doet om op r aan te komen.

Voor het elektrische veld geldt

๐„=ϕ๐€t,

en voor het magnetische veld

๐=×๐€

Daarin is de nablavector, of alleen del, en is gedefinieerd als (x,y,z).

Lagrangiaan

De lagrangiaan van een geladen deeltje in een elektromagnetisch veld is[1]

L=mc2γqϕ+q๐ฏ๐€

Daarin is γ=(1v2/c2)1/2 de Lorentzfactor.

De gegeneraliseerde impuls van het deeltje is

L๐ฏ=γm๐ฏ+q๐€=๐ฉ+q๐€

De bewegingsvergelijking is

d(๐ฉ+q๐€)dt=L=qϕ+q(๐ฏ๐€)

Omdat langs de baan van het deeltje

d๐€/dt=๐€/t+(๐ฏ)๐€

en volgens de vectoranalyse

(๐ฏ๐€)=(๐ฏ)๐€+๐ฏ×(×๐€),

volgt

d๐ฉdt=q๐€tqϕ+q๐ฏ×(×๐€)=q๐„+q๐ฏ×๐

Elektrostatica

Wanneer de lading- en stroomdichtheden niet van de tijd afhangen, veranderen de elektrische en magnetische velden volgens de Maxwellvergelijkingen ook niet meer. De bovenstaande vergelijking voor ๐„ is dan te vereenvoudigen tot

๐„=ϕ

In de formules voor de elektrische en magnetische potentialen verandert niets, behalve dat de tijdsafhankelijkheid van de ladings- en stroomdichtheden verdwijnen. De vergelijking voor ๐ uit ๐€ verandert ook niet.

In de meeste gevallen is het onmogelijk of zeer moeilijk de bovenstaande integralen analytisch op te lossen. In de statica bestaan er echter nog twee handige formules, die in feite twee vergelijkingen van Maxwell zijn, maar anders geformuleerd, namelijk

  • ๐„โ†’d๐€โ†’=Qencε0 de wet van Gauss. In deze formule is Qenc de lading die wordt ingesloten door de oppervlakte A waarover wordt geรฏntegreerd.
  • ๐โ†’dโ†’=μ0Ienc, de wet van Ampรจre. Hierbij is Ienc de stroom is die door de gesloten lus, met lengte , heen gaat waarover wordt geรฏntegreerd.

Wanneer ๐„ en ๐ constant zijn over het oppervlak of de lus waarover ze geรฏntegreerd worden, kunnen ze buiten de integraal worden gehaald, waarna ze direct zijn uit te rekenen. Dit kan alleen bij objecten die symmetrisch zijn, zoals bollen, cilinders en platen.

Elektromagnetische straling

Sjabloon:Zie hoofdartikel

Wanneer op de laatste twee vergelijkingen van Maxwell in vacuรผm het uitproduct wordt toegepast, volgt

×(×๐„)=ε0μ0๐„t,

en eenzelfde vergelijking voor ๐. Dit type vergelijking wordt een golfvergelijking genoemd, omdat de oplossing ervan een golfverschijnsel beschrijft. De snelheid van dit golfverschijnsel is (ε0μ0)1/2, die wanneer uitgerekend precies de lichtsnelheid blijkt te zijn. Hieruit kan worden geconcludeerd dat licht een elektromagnetische straling is, met een nogal specifiek frequentiespectrum.

Sjabloon:Appendix

  1. โ†‘ L D Landau, E M Lifshitz, The classical Theory of Fields, Pergamon Press 1975, par.16