Priemring

Uit testwiki
Naar navigatie springen Naar zoeken springen

In de abstracte algebra, meer specifiek de ringtheorie, een deelgebied van de wiskunde, heet een niet-triviale ring R een priemring, als voor elke twee elementen a en b van R geldt dat als arb=0 voor alle r in R, dan is of a=0 of b=0. Priemringen kunnen ook verwijzen naar de delingsringen van een lichaam (Ned) / veld (Be) bepaald door haar karakteristiek. Voor een lichaam/veld met karakteristiek 0, is de priemring de verzameling gehele getallen; voor een lichaam/veld met karakteristiek een priemgetal is de priemring het eindige lichaam/veld van orde p.[1]

Onder de eerste definitie kan men priemringen beschouwen als een gelijktijdige generalisatie van zowel integriteitsdomeinen als matrixringen over een lichaam/veld.

Voorbeelden

  • Elke niet-triviale ring zonder nuldelers (domein) is een priemring.
  • Elke enkelvoudige ring is een priemring, en meer in het algemeen is elke linker- of rechter primitieve ring is een priemring.
  • Elke matrixring over een integriteitsdomein is een priemring. Met name is de ring van geheeltallige 2×2-matrices een priemring.

Eigenschappen

Voetnoten

Sjabloon:References

Referenties

  • Sjabloon:En Sjabloon:Aut, A First Course in Noncommutative Rings (Een eerste cursus in niet-commutatieve ringen), Springer-Verlag, Berlin, New York, 2nd, 978-0-387-95325-0, 2001
  1. Pagina 90 van Algebra van Serge Lang