Vrije lus

Uit testwiki
Naar navigatie springen Naar zoeken springen

In de topologie, een deelgebied van de wiskunde, is een vrije lus een variant op het topologische begrip van een lus. Terwijl een lus een onderscheidend punt op zich heeft, een zogenaamde basispunt, heeft een vrije lus dat niet.

Laat X een topologische ruimte zijn, dan is een vrije lus in X een equivalentieklasse van continue functies van de cirkel S1 naar X. Twee lussen zijn equivalent als ze afwijken door een reparametrisatie van de cirkel. Dat wil zeggen dat fg als

g=fψ

voor een homeomorfisme ψ:S1S1.

Een vrije lus is dus, in tegenstelling tot een lus met een begin- en eindpunt die in de definitie van de fundamentaalgroep wordt gebruikt, een afbeelding van de cirkel op de ruimte zonder de restrictie dat die een begin- en eindpunt heeft. Vrije homotopieklassen van vrije lussen komen overeen met de conjugatieklassen in de fundamentaalgroep.