Riemann-Xi-functie
Naar navigatie springen
Naar zoeken springen

In de analytische getaltheorie, een deelgebied van de wiskunde, is de Riemann-Xi-functie een variant op de Riemann-zèta-functie, vernoemd naar de Duitse wiskundige Bernhard Riemann.
Definitie
Riemann's oorspronkelijke xi-functie (met een kleine letter ξ) is door Edmund Landau hernoemd naar Xi-functie met een grote letter Ξ. Landau's versie met een kleine letter Xi (ξ) wordt als volgt gedefinieerd:
waarbij . De staat voor de Riemann-zèta-functie en de staat voor de gammafunctie.
De Xi-functie (Ξ) van Landau wordt als volgt gedefinieerd:
waarbij
Waarden
De algemene vorm van de xi-functie voor hele getallen gaat als volgt:
waarin Bn staat voor het n-ste bernoulligetal. Bijvoorbeeld
Reeksontwikkeling
De functie heeft de reeksontwikkeling
waarbij