Rekenkundige functie

Uit testwiki
Naar navigatie springen Naar zoeken springen

Een rekenkundige functie is een functie die gedefinieerd is voor positieve natuurlijke getallen, en die als waarden reële getallen aanneemt of in het algemeen complexe getallen. Een rekenkundige functie drukt een zekere eigenschap van de natuurlijke getallen uit.

Rekenkundige functies worden gebruikt bij de studie van de eigenschappen van natuurlijke getallen, maar zijn ook zelf het onderwerp van studie. Ze zijn over het algemeen niet monotoon, maar kunnen een grillig verloop hebben. Men onderzoekt onder meer de spreiding van de functiewaarden en het asymptotische gedrag van de functies als het argument naar oneindig gaat.

Voorbeelden

Grafiek van de eerste 100 waarden van de Eulerfunctie

Additieve en multiplicatieve functies

Onder de rekenkundige functies onderscheidt men twee belangrijke klassen, de multiplicatieve rekenkundige functies en de additieve rekenkundige functies.

Voor een multiplicatieve functie is

f(mn)=f(m)f(n),

terwijl voor een additieve functie

f(mn)=f(m)+f(n)

wanneer m en n onderling ondeelbare natuurlijke getallen zijn.

Een voorbeeld van een additieve functie is logn. De Eulerfunctie is een voorbeeld van een multiplicatieve functie.