Regelmatige zeshoek

Uit testwiki
Naar navigatie springen Naar zoeken springen
constructie regelmatige zeshoek.
Honingraat in een bijenkast
Honingraat in een bijenkast

Een regelmatige zeshoek is een regelmatige veelhoek met zes gelijke hoeken en zes gelijke zijden. Een zeshoek of hexagoon, Oudgrieks: Sjabloon:Polytonic, hex, zes en Sjabloon:Polytonic, gonia, hoek, in het algemeen is een figuur met zes hoeken en zes zijden. De hoeken van een regelmatige zeshoek zijn 120° = 180° – 360°/6. De regelmatige zeshoek kan worden gezien als samengesteld uit zes gelijkzijdige driehoeken. Zoals het honingraatpatroon laat zien, is de regelmatige zeshoek een van de regelmatige veelhoeken die een vlak kunnen betegelen. De andere zijn de gelijkzijdige driehoek en het vierkant.

Het is eenvoudig een regelmatige zeshoek te construeren met passer en liniaal.

Techniek

Regelmatige zeshoeken worden in de techniek gebruikt voor zeskantmoeren en -bouten, die met een bijpassende sleutel kunnen worden aangedraaid.

Honingraat-vermoeden

Zeshoeken hebben een kleine omtrek ten opzichte van hun oppervlakte, kleiner dan de andere regelmatige vlakvullende veelhoeken. Marcus Terentius Varro schreef daar in 36 v.Chr. al over, en ook Pappos van Alexandrië was ermee bekend. Thomas C. Hales bewees in 1999 het honingraat-vermoeden: hij toonde aan dat regelmatige zeshoeken de zuinigste manier geven om een vlak te vullen met figuren van gelijk oppervlak: een verdeling met minder omtreklengte is onmogelijk.[1]

Formules

Voor een regelmatige zeshoek met zijde z is:

{de straal van de omgeschreven cirkelR=zde omtrek O=6zde breedte B=2zde hoogte H=3zde oppervlakte A=323z2

Dit betreft een zeshoek die op zijn platte kant staat.

Frankrijk als zeshoek

Sjabloon:Zie hoofdartikel Het vasteland van metropolitaan Frankrijk wordt wel voorgesteld als een regelmatige zeshoek: La France hexagone.[2][3] Daarmee is l'Hexagone een cultureel symbool en een bijnaam van het land geworden.

Sjabloon:Commonscat Sjabloon:Appendix Sjabloon:Navigatie veelhoeken