Stelling van Stewart

Uit testwiki
Versie door imported>Bdijkstra op 19 jun 2018 om 21:07 (Categorie:Wiskundige stelling toegevoegd (HotCat.js))
(wijz) ← Oudere versie | Huidige versie (wijz) | Nieuwere versie → (wijz)
Naar navigatie springen Naar zoeken springen
De formule van Stewart

De stelling van Stewart is een formule die gebruikt kan worden om de lengte van een hoektransversaal in een driehoek te berekenen. Hij werd in 1746 door de Schotse wiskundige Matthew Stewart opgesteld, en is naar hem vernoemd alhoewel Archimedes hem vermoedelijk al kende. De stelling is te zien als een uitbreiding van de Stelling van Apollonius.

De stelling is door de Nederlander Oene Bottema gegeneraliseerd voor een viervlak.[1]

De formule

Gegeven een driehoek ABC met de gebruikelijke a, b en c als lengtes van de zijden. Laat M een punt zijn op AB met

d=CM, x=AM, y=MB en dus c=x+y.

Dan luidt de formule van Stewart dat

cd2=xa2+yb2cxy.

Bewijs

Men kan de formule afleiden met behulp van de cosinusregel. Nemen we ϕ=CMB dan geldt in de driehoeken PBC en PCA

  • a2=d2+y22dycosϕ,
  • b2=d2+x2+2dxcosϕ.

Door x maal de eerste vergelijking op te tellen bij y maal de tweede vergelijking krijgen we de formule van Stewart.

Andere formulering

De stelling wordt vaak op een alternatieve manier geformulieerd, door AM uit te drukken als pAB. Dan geldt:

pBC2+(1p)AC2=CM2+AMBM,

of alternatief:

pBC2+(1p)AC2=CM2+p(1p)AB2.


Sjabloon:Appendix

  1. Sjabloon:Aut "De formule van Stewart voor een viervlak.", Nieuw Tijdschrift voor Wiskunde., 68/1980-81, pp 79-83.